从CSST低分辨率光谱中精确估计恒星红化值
Estimating Stellar Reddening Values from CSST Low Resolution Spectra
-
摘要: 在天体物理研究中, 准确扣除星际消光与红化的影响对于光学和近红外观测至关重要. 恒星的星际红化信息是揭示其内秉性质的关键. 中国空间站望远镜(Chinese Space Station Telescope, CSST)的光学巡天项目将为科学家提供海量的恒星无缝光谱数据, 而基于这些数据测量恒星的红化信息, 对于进一步测定恒星参数和理解银河系的性质具有重要意义. 提出了一种基于随机森林回归的机器学习方法, 该方法以光谱的归一化流量为输入参数来训练恒星的内秉颜色, 旨在精确估计CSST低分辨率光谱中的恒星红化值. 利用下一代恒星光谱库(Next Generation Stellar Spectral Library, NGSL)模拟CSST低分辨率光谱, 并预测了所提方法的精度, 同时探讨了不同波段和有效温度对结果精度的影响. 基于CSST不同波段的无缝光谱所得到的恒星红化值 E\;(g-i) ( g 、 i 分别为g、i波段星等)与真实值的比较结果显示, 在光谱信噪比为100时, GU波段的平均误差为0.0005 mag, 标准差为0.0272 mag; GV波段的平均误差为0.0008 mag, 标准差为0.0286 mag; GI波段的平均误差为0.0008 mag, 标准差为0.0271 mag; 全波段的平均误差为0.0003 mag, 标准差为0.0252 mag. 此方法作为CSST科学预研究的一部分, 未来可直接应用于CSST数据, 为CSST的科学研究提供基础支持.Abstract: In astrophysical research, accurately accounting for the effects of interstellar extinction and reddening is crucial for optical and near-infrared observations. Information on the interstellar reddening of stars is essential for uncovering their intrinsic properties. The optical survey project of the Chinese Space Station Telescope (CSST) will provide us with a vast amount of very low resolution spectral data for stars, and measuring the reddening information of stars based on this data is of great significance for further determining stellar parameters and understanding the nature of the Milky Way. This study proposes a machine learning method based on random forest regression, which uses the normalized flux of spectra as input parameters to train the intrinsic colors of stars, aiming to accurately estimate the reddening values of stars in very low resolution CSST spectra. This study simulated CSST spectra using the Next Generation Spectral Library (NGSL), predicted the accuracy of the proposed method, and also discussed the impact of different bands and effective temperatures on the accuracy of the results. The comparison between the reddening values E\;(g-i) obtained from the seamless spectra of different CSST bands and the true values shows that at a spectral signal-to-noise ratio of 100, the average deviation for the GU band is 0.0005 mag with a standard deviation of 0.0272 mag; for the GV band, the average deviation is 0.0008 mag with a standard deviation of 0.0286 mag; for the GI band, the average deviation is 0.0008 mag with a standard deviation of 0.0271 mag; and for the full band, the average deviation is 0.0003 mag with a standard deviation of 0.0252 mag. This method, as part of the scientific pre-research for CSST, can be directly applied to CSST data in the future, providing basic support for scientific research on CSST.
下载: